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Integrin-Dependent Apposition of Drosophila
Extraembryonic Membranes Promotes
Morphogenesis and Prevents Anoikis

Introduction

The role of extraembryonic tissues in regulating embry-
onic development has only recently begun to be ap-
preciated in Drosophila. Two cell types that arise at the

Bruce H. Reed,1,* Ronit Wilk,1 Frieder Schöck,2
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The amnioserosa plays a key role in germ band retrac-
tion and dorsal closure. It is likely to function both in

Summary cell signaling [2, 3] and in generating the forces that
drive these morphogenetic processes [4–6]. The role of

Background: Two extraembryonic tissues form early in the yolk sac during development has remained obscure.
Drosophila development. One, the amnioserosa, has been The expression of several genes in the yolk nuclei, in-
implicated in the morphogenetic processes of germ band cluding serpent [7], sisterlessA [8], D-ret [9], forkhead
retraction and dorsal closure. The developmental role [10], and those encoding imaginal disc growth factors
of the other, the yolk sac, is obscure. (IDGFs) [11], suggests that the yolk sac may play impor-
Results: By using live-imaging techniques, we report tant roles in processes other than nutrition. The develop-
intimate interactions between the amnioserosa and the mental defects produced by loss-of-function alleles of
yolk sac during germ band retraction and dorsal closure. sisterlessA, which is expressed exclusively in the yolk
These tissue interactions fail in a subset of myospheroid nuclei from blastoderm stages on, have led to specula-
(mys: �PS integrin) mutant embryos, leading to failure tion that the yolk may play a role in morphogenesis [8].
of germ band retraction and dorsal closure. The Dro- However, the functions of the yolk sac in morphogene-
sophila homolog of mammalian basigin (EMMPRIN, sis—if any—are unknown.
CD147)—an integrin-associated transmembrane glyco- Here, we show that physical interaction of the amnio-
protein—is highly enriched in the extraembryonic tis- serosa and yolk sac plays a crucial role in both germ
sues. Strong dominant genetic interactions between band retraction and dorsal closure of the embryo. We
basigin and mys mutations cause severe defects in dor- demonstrate that �PS integrin mediates extraembryonic
sal closure, consistent with basigin functioning together membrane interactions that are required for survival of
with �PS integrin in extraembryonic membrane ap- the amnioserosa. Anoikis of the amnioserosa occurs
position. During normal development, JNK signaling is during normal development after closure of the midgut
upregulated in the amnioserosa, as midgut closure dis- disrupts integrin-dependent apposition of the amniose-
rupts contact with the yolk sac. Subsequently, the amni- rosa and yolk sac. In mys mutants, failure to establish
oserosal epithelium degenerates in a process that is apposition of extraembryonic membranes leads to pre-
independent of the reaper, hid, and grim cell death genes. mature anoikis of the amnioserosa. We investigate a
In mys mutants that fail to establish contact between possible role for JNK signaling and the reaper/hid/grim
the extraembryonic membranes, the amnioserosa un- cell death genes in amnioserosal anoikis during normal
dergoes premature disintegration and death. development.
Conclusions: Intimate apposition of the amnioserosa
and yolk sac prevents anoikis of the amnioserosa. Sur-

Resultsvival of the amnioserosa is essential for germ band re-
traction and dorsal closure. We hypothesize that during

The Amnioserosal and Yolk Sac Membranesnormal development, loss of integrin-dependent con-
Establish Intimate Contact during Germ Bandtact between the extraembryonic tissues results in
Retraction and Dorsal ClosureJNK-dependent amnioserosal disintegration and death,
In fixed, sectioned material it can be seen that as germthus representing an example of developmentally pro-
band retraction commences, there is a gap betweengrammed anoikis.
the amnioserosa and the yolk sac membrane (Figures
1A–1C). Membrane projections from both the basal side
of the amnioserosa and the dorsal region of the yolk*Correspondence: lipshitz@sickkids.ca (H.D.L.), reed@sickkids.ca

(B.H.R.) sac can be seen to penetrate this space (Figures 1B
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Figure 1. Phase I of Amnioserosa Yolk Sac
Membrane Interaction: Transient Contacts

(A) Diagram of an early stage 12 embryo in
sagittal view depicting the germ band (gray
with red outline), amnioserosa (gray with
black outline), and yolk sac (yellow with blue
outline). The box indicates the region shown
in transmission electron micrographs (B and
C) and live image sequences in (D) and (E).
(B) Transmission electron micrographs of the
region of the amnioserosa that overlies the
yolk. The yolk sac membrane is marked by
the yellow dotted line. Abbreviations: nu, nu-
cleus of amnioserosal cell; ys, yolk sac. Aster-
isks mark some of the membrane protrusions
from the amnioserosa; the gap between the
amnioserosa and the yolk sac is indicated
with a bracket. (C) Ruthenium red-stained
embryos reveal that the cleft between amni-
oserosa and yolk sac (indicated with a bracket)
is enriched in glycoconjugates. Note the mem-
brane bound processes (asterisks) from both
the amnioserosa and the yolk sac, which
come into close contact. Scale bars in (B) and
(C), 500 nm. Filopodia-like extensions ([D],
arrow) emanate from the basal side of the
amnioserosal epithelium and make transient
contact with the yolk sac membrane (arrow-
head). Extensions ([E], star) from the apical
side of the yolk sac membrane make transient
contact with the basal side of the amniose-
rosa. Frames were sampled at 6 s intervals
from a live-imaging movie (see Movie 1). The
embryo carries Ubi-DE-cadherin-GFP, ftz-
GAL4, UAS-actin-GFP, and G289, the protein
trap transposon (PTT) that reports basigin ex-
pression as a basigin-GFP fusion protein. The
basigin-GFP signal is particularly strong on
the yolk sac membrane (which can be seen
to overlie the yolk, ys) but is also present on
the amnioserosa (as). In all images, anterior
is to the left and dorsal toward the top of the
page. Scale bar represents 10 �m.

and 1C). This space is enriched in glycoconjugates as initiates and are accomplished by two classes of cellular
extensions: filopodia that emanate from the amniose-assayed by ruthenium red staining (Figure 1C). Since

the bulk of the extracellular matrix is not laid down at rosa and contact the yolk sac membrane (marked by
GFP-DE-cadherin � actin-GFP; Figure 1D and Movie 1),this developmental stage [12], these polysaccharides

may be associated with transmembrane glycoproteins and membrane bound projections emanating from the
yolk sac, which contact the amnioserosa (marked byrather than an elaborate extracellular matrix (ECM) per

se. basigin-GFP; Figure 1E and Movie 1). Their lack of stable
association with their target cells and their highly dy-Live imaging of germ band retraction and dorsal clo-

sure revealed that contacts between the yolk sac mem- namic character suggest that neither the amnioserosal
nor the yolk sac projections generate the mechanicalbrane and the amnioserosa initiate at the beginning of

germ band retraction and are remarkably dynamic. Im- forces that drive morphogenesis. Instead these projec-
tions may facilitate a chemosensory or signaling func-aging was carried out by using combinations of three

different GFP fusion proteins that serve as markers of tion between the amnioserosa and yolk sac membrane,
as discussed below.the F actin-based cytoskeleton (actin-GFP) [13]; the am-

nioserosal and yolk sac membranes (DE-cadherin-GFP) The intimate and persistent interaction between the
amnioserosa and yolk sac—phase II—initiates in the[14]; and G289, a homozygous viable PTT line [15] that

reports basigin expression as a basigin-GFP fusion pro- dorsal-anterior region of the amnioserosa (Figures 2A
and 2B; Movie 2). This contact is maintained and furthertein (see Experimental Procedures).

The initial, transient contacts between the amniose- contact is established in an anterior-to-posterior direc-
tion as retraction progresses (Figures 2C and 2D; Movierosa and the yolk sac membrane—referred to here as

phase I interactions—occur as germ band retraction 3). Close apposition of the amnioserosa and yolk sac
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Figure 2. Phase II of Amnioserosa Yolk Sac Membrane Interaction: Intimacy

(A and C) Schematic diagrams showing early (A) and late (C) stages of germ band retraction. The color scheme is as in Figure 1A. The boxes
in (A) and (C) indicate the positions of the images shown in (B) and (D), respectively. (B) Intimate apposition of the amnioserosa (arrow) and
yolk sac (asterisk) initiates in the dorsal-anterior (0 min) and then progresses posteriorly (10 to 50 min). Frames were sampled at 10 min
intervals from a live-imaging movie (see Movie 2). The embryo carries Ubi-DE-cadherin-GFP, ftz-GAL4, and UAS-actin-GFP and is viewed
parasagittally over the gap between the cephalic region and the retracting caudal germ band. Scale bar represents 20 �m. (C) Late phase II
apposition of the amnioserosa (arrowhead) and the yolk sac membrane (asterisk). In this case, frames were sampled every 7 min from a live-
imaging movie (see Movie 3). The embryo carries Ubi-DE-cadherin-GFP, ftz-GAL4, UAS-actin-GFP, and the G289 PTT. The basigin-GFP signal
is particularly strong on the yolk sac membrane (asterisk), indicating that the amnioserosa achieves close intimacy with this membrane. The
embryo is viewed parasagittally. Scale bar represents 10 �m.
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acid stretch of conservation, which will be referred to
as the “basibox” and which includes the predicted
transmembrane domain (Figure 3B). One of the defining
features of the basibox is a glutamic acid residue in
the middle of the transmembrane domain. The basibox
is 52%–54% identical between Drosophila and verte-
brates; the central 27 amino acids show 78%–81%
identity.

Basigin and �PS Integrin (mys) Mutants
Show Dominant Genetic Interactions
There are multiple P element inserts in or near the basi-
gin gene. One, the NP6293 GAL4 P element insertion,
is in the 5�UTR of a predicted basigin transcript. This
insertion causes leaky postembryonic lethality when ho-
mozygous and is referred to here as bsgNP6293. Homozy-Figure 3. Evolutionary Conservation of Basigin Structure
gous bsgNP6293 embryos show no defects in germ band(A) Domain structure of Drosophila and human basigin: Ig domains
retraction and dorsal closure. A P element insert that(red), transmembrane domains (blue), basibox (yellow), predicted
causes male sterility has previously been referred to asO-linked glycosylation sites (φ), and predicted signal peptide cleav-

age site (arrow). gelded [20].
(B) The basibox: perfectly conserved amino acids are highlighted Basigin and integrins associate physically in mam-
in yellow. The predicted transmembrane domain is shown in blue mals, possibly through direct contacts between basigin
with the conserved glutamic acid residue (E) indicated (asterisk).

and the �1 integrin subunit [21]. In Drosophila there is a
single � integrin, called �PS integrin, which is encoded
by the myospheroid (mys) gene [22]. mys1 mutants showmembranes persists during dorsal closure (data not
germ band retraction and dorsal closure defects [23–25].shown).

Basigin and �PS integrin mutants show striking domi-
nant genetic interactions: while bsgNP6293 mutants showBasigin Structure and Expression Is Highly
no defects in dorsal closure and mys1 mutant embryosConserved in Mammals and Drosophila
show only weak dorsal closure defects—evidenced byIn mammals, basigin has been reported to be expressed
a small dorsal hole—mys1 mutant embryos from femalesand to function in extraembryonic tissues during early
in which the dose of the basigin gene is reduced bydevelopment, when it is required for embryo implanta-
50% show a striking increase in the size of the dorsaltion [16, 17]. Basigin also functions in retinal epithelial
hole, while double mutant embryos show an even greatermorphogenesis [18] and during invasive growth of tu-
increase in dorsal hole size (Figure 4A). The dominantmors [19]. Since Drosophila basigin is highly enriched
genetic interaction of bsg and mys mutants is consistenton the extraembryonic membranes prior to and during
with the possibility that basigin and integrin proteinstheir close apposition (Figures 1 and 2), we directed our
interact physically in Drosophila.attention to the structure and function of Drosophila

basigin.
The Drosophila basigin transcription unit (CG31605, �PS Integrin Is Required for Intimate Apposition

of the Amnioserosa and Yolk SacFBgn0051605) encodes multiple transcript variants (for
details see http://www.fruitfly.org/). The transcripts en- Live imaging shows that those mys1 mutant embryos

that fail germ band retraction exhibit apparently normalcode two distinct protein isoforms: a long, 298 amino
acid (aa) isoform and a short, 265 aa isoform (only the phase I interactions (for example, yolk sac projections

are produced and contact the amnioserosa; Movie 4).latter is shown in Figure 3A). The long and short isoforms
differ only at their amino and carboxy termini: the first However, phase II membrane apposition fails com-

pletely. Most striking is a failure of the dorsal-anterior50 aa of the long form are substituted by 25 aa in
the short form; the long form also has an 8 aa carboxy- region of the amnioserosa to initiate contact with the

yolk sac membrane (Figure 4B; Movie 4). In those mys1terminal extension. The distinct N-terminal regions
each contain their own unique transmembrane domains mutant embryos that complete germ band retraction,

there is failure to maintain the apposition of the amnio-and signal peptide cleavage sites. The long isoform’s
N-terminal region is glycine rich. Database searches serosa and yolk sac membrane, with subsequent high

penetrance failure of dorsal closure. Narasimha andshow that long and short isoforms also exist for human
basigin. Brown [26] (this issue of Current Biology) provide inde-

pendent evidence supporting a role for integrin in appo-Drosophila and mammalian basigin exhibit strong
conservation of immunoglobulin (Ig) domain organiza- sition of amnioserosal and yolk sac membranes during

dorsal closure.tion, location of predicted O linked glycosylation sites,
as well as extracellular and cytoplasmic tail length (Fig- In summary, phase II membrane intimacy is compro-

mised in mys1 mutants, implicating �PS integrin in theure 3A). Both mammalian and Drosophila basigin have
two extracellular Ig domains, the C-terminal of which close apposition of amnioserosal and yolk sac mem-

branes. The failure of both germ band retraction andappears to be representative of a “primordial” Ig domain
[19]. There is an additional, more C-terminal 50 amino dorsal closure in mys1 mutants suggests that close ap-
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In Wild-type Embryos the Amnioserosa
Disintegrates and Dies after Dorsal
Closure is Complete
In wild-type embryos, the concomitant closure of the
dorsal epidermis and midgut abrogate apposition of the
amnioserosa and yolk sac. We therefore asked when
during normal development the amnioserosa loses in-
tegrity and dies. It has been shown, by using live im-
aging, that a small subset of the amnioserosal cells drop
out of the epithelium prior to completion of closure [4].
However, live imaging of the majority of amnioserosal
cells—which remain in the epithelium—after dorsal clo-
sure [1] has not been attempted previously.

We therefore live-imaged embryos in which amniose-
rosal cells had been specifically labeled (see Experimen-
tal Procedures), thus definitively addressing the fate of
the amnioserosa after dorsal closure: the amnioserosa
invaginates to form a tube-like structure with its perime-
ter cells aligning on the dorsal side of the tube, beneath
the dorsal midline of the embryo (Figures 5A and 5C;
Movie 5). Over a period of 2–3 hr, individual nonperimeter
cells round up and are extruded from the tube (Figure
5B; Movie 5). Finally, the amnioserosal perimeter cells
also dissociate (Figure 5D). As amnioserosal cells are
extruded, they are rapidly engulfed by hemocytes, which
thus become GFP positive (Figure 5B; Movie 5). These
results are fully consistent with those inferred from anal-
ysis of fixed sectioned embryos [27].

Figure 4. Quantification of Dorsal Closure Defects in mys Mutants It is possible to visualize a subset of the amnioserosal
with Varied Doses of bsg and Failure of Phase II Membrane Apposi-

cells as acridine orange positive either before they leavetion and Anoikis in mys Mutants
the tube or shortly thereafter (Figures 5E and 5F). Both(A) Histograms showing the size distribution of dorsal cuticular hole
acridine orange staining and engulfment by hemocyteslength (�m) in single and double mutant lethal embryos. Shown are
are hallmarks of dying cells. To determine whether deaththe distributions for mys1 (top; n � 73), embryos from a cross of

mys1/� ; bsgNP6293/� females to wild-type males (middle; n � 131), of amnioserosal cells might be reaper dependent, we
and embryos from a cross of mys1/�; bsgNP6293/� females to asked whether we could visualize reaper expression in
bsgNP6293/� males (bottom; n � 120). In the latter two crosses, the the amnioserosal cells prior to or after extrusion. No
maternal dose of both mys and bsg is reduced. The embryonic

reaper-expressing cells were detected (data not shown).genotype is indicated in each panel; parentheses indicate that it
To further test whether amnioserosal cell death mightwas not possible to distinguish those that carry the mutation from
be reaper dependent, we used the H99 deficiencythose that did not. The data in the middle panel show dominant dose-

dependent maternal and/or zygotic interaction of bsg with mys. (Df(3L)H99), which removes the reaper, head involution
(B) In mys1 mutants, absence of phase II contact between the amni- defective (hid), and grim genes [28], and visualized the
oserosa (arrow, 0 min) and the yolk sac membrane is shown in amnioserosa with anti-HNT antibody [2, 29]. If amniose-
the 0, 13, and 26 min frames. Loss of epithelial integrity occurs

rosal death were reaper dependent, one would expectprogressively at 13 and 26 min (see Movie 5). Hemocytes (asterisk)
HNT-positive cells to persist in H99 mutants when com-can be seen engulfing the dead amnioserosal cells. The embryo is
pared with wild-type. Such persistence does not occurfrom a cross of mys1/FM7, Kr-GAL4 UAS-GFP females to FM7,

Kr-GAL4 UAS-GFP/Y; G289/� males. Thus the lack of Kr-GAL4- (Figures 5G and 5H). While it is conceivable that HNT
driven GFP signal means that the genotype of the filmed embryo is expression is downregulated in a persistent amniose-
unambiguously mys1/Y, labeled with G289 (basigin-GFP). rosa, the simplest interpretation of these data is that

death of the amnioserosa is reaper independent. This
conclusion is consistent with the recent suggestion that

position of the extraembryonic membranes is required Drosophila embryos have a caspase-independent cell
for these morphogenetic processes. The strong en- engulfment system, which is still operative in H99 mu-
hancement of mys1 dorsal closure defects by bsgNP6293 tants [30].
mutants suggests that basigin functions together with
�PS integrin in these morphogenetic processes. Ante-
rior-to-posterior “zipping up” of the membranes may Disintegration and Death of the Amnioserosa

Is Preceded by Loss of Integrin-Dependentgenerate forces that help push the germ band posteri-
orly. Alternatively, as shown below, the role of integrin- Contact with the Yolk Sac and Upregulation

of JNK Signalingdependent membrane apposition may be indirect, pro-
moting survival of the amnioserosa, which in turn directs It has been shown that loss of integrin-dependent con-

tact between cells and the extracellular matrix leads toretraction and closure via signaling and/or physical
contacts. cell death, a process referred to as anoikis [31]. Anoikis
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Figure 5. Disintegration and Death of the Am-
nioserosa Occurs after Dorsal Closure and Is
reaper/hid/grim Independent

(A and B) The amnioserosa (GFP-labeled with
LP1 GAL4 and UAS-actin-GFP) comes to un-
derlie the epidermis after dorsal closure (A)
and subsequently disintegrates (B). Cells that
are extruded from the amnioerosa are engulfed
by hemocytes, which become GFP positive
(asterisk). Frames were sampled from a live-
imaging movie (see Movie 5).
(C and D) The YET1 vital enhancer trap labels
the perimeter cells of the amnioserosa, which
align beneath the dorsal epidermal midline
after closure (C). The YET1-labeled cells dis-
sociate in the final stages of amnioserosal
disintegration (D). Standard epifluorescence
images are shown. The yolk enveloped by the
gut autofluoresces in these images.
(E and F) Amnioserosal cells become acridine
orange positive after dorsal closure. The am-
nioserosa is labeled with LP1 GAL4-driven
nuclear �-galactosidase (E). These cells are
also acridine orange positive (F); one such
double-labeled cell is highlighted with an
arrow.
(G and H) The amnioserosa does not persist
in H99 mutant embryos (H) when compared to
wild-type (G). Embryos were immunostained
for HNT, which can be seen to label the nuclei
of the midgut, peripheral nervous system, and
tracheae. H99 mutants were identified on the
basis of failure of head involution.

is promoted by the Jun amino-terminal kinase (JNK) ing in the amnioserosa follows loss of integrin-depen-
dent apposition of the amnioserosa and yolk sac mem-pathway [31]. Our previous analyses showed that JNK

signaling in the amnioserosa is downregulated prior to brane and precedes amnioserosal disintegration and
death. These data are consistent with the hypothesisdorsal closure [3]. In those analyses, puckered-lacZ ex-

pression was used as a read-out of JNK signaling, and that midgut closure disrupts integrin-dependent apposi-
tion of the amnioserosa and yolk sac, thus inducing JNKit was shown that relocation of JUN and FOS proteins

from the nucleus to the cytoplasm of amnioserosal cells signaling in the amnioserosa and its subsequent anoikis.
correlates with downregulation of JNK signaling. While
JNK signaling is downregulated in the amnioserosa prior Discussion
to dorsal closure, we have found that JNK signaling is
upregulated in this tissue as dorsal closure approaches We have shown that in the Drosophila embryo, intimate

apposition of the extraembryonic membranes is integrincompletion (Figure 6). Thus, reactivation of JNK signal-

Figure 6. JNK Signaling Is Upregulated in the
Amnioserosa toward the Completion of Dor-
sal Closure

(A, C, and E) Midclosure. (B and D) Late clo-
sure. (F) Postclosure stage embryo. (A and B)
JUN. (C and D) FOS. (E and F) puc-lacZ. Both
JUN and FOS are largely cytoplasmic in mid-
closure stages but become predominantly nu-
clear during late closure. puc-lacZ is not ex-
pressed during midclosure (only epidermal
leading edge cells are seen) but is activated in
the amnioserosa (arrows) during late closure.
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dependent and promotes the integrity and survival of of germ band retraction and dorsal closure. However,
the role of the transient phase I interaction is less clear.the amnioserosa. During normal development, closure

of the midgut abrogates contact between the amniose- As described above, it is unlikely that the phase I interac-
tions play a role in generation of the forces that lead torosa and yolk sac. JNK signaling is then upregulated in

the amnioserosa, which subsquently disintegrates and close apposition of these extraembryonic membranes.
It seems more likely that the transient interactions playdies, consistent with this being an example of develop-

mentally programmed anoikis. In a subset of mys (�PS a role in communication between the yolk sac and the
amnioserosa. It has recently been reported that the ec-integrin) mutant embryos, apposition of the extraembry-

onic membranes never occurs, and the amnioserosa dysone receptor and active ecdysteroids are present in
the amnioserosa and required for germ band retractionundergoes premature anoikis. The strong genetic inter-

action of mys and basigin mutants is consistent with [33]. Expression of a dominant-negative form of the ec-
dysone receptor worsens germ band retraction defectsthe known physical interaction of these molecules in

mammals [21] and suggests that basigin might act to- in mys (�PS integrin) mutants [33]. Furthermore, it has
been speculated that enzymes residing in the yolk mightgether with integrin to promote extraembryonic mem-

brane interaction and to prevent anoikis of the amniose- participate in conversion of ecdysone to its active forms
[33]. We have observed dynamic invaginations of therosa. Failure of germ band retraction and dorsal closure

occurs in integrin mutants and is greatly enhanced when yolk sac membrane, which dive into the yolk mass and
transiently contact the yolk spheres (Movie 6). Thus, onebasigin levels are reduced. Together, these results sug-

gest that extraembryonic membrane interaction pro- tantalizing possibility is that these invaginations trans-
port active forms of ecdysone—as well as other keymotes survival of the amnioserosa, which in turn directs

germ band retraction and dorsal closure through physi- signaling molecules—from the yolk spheres to the yolk
sac membrane. Phase I amnioserosa-yolk membranecal contacts [4–6] and/or intercellular signaling [2, 3].

The hypothesis that amnioserosal anoikis is triggered contacts and/or phase II intimate membrane apposition
might subsequently bring these molecules to the amnio-during normal development by loss of integrin-mediated

contact with the yolk sac membrane makes several test- serosa.
able predictions. First, that in mutants in which the amni-
oserosa undergoes premature apoptosis prior to germ Conclusions
band retraction (e.g., hindsight [2, 32]), phase II apposi- The extraembryonic tissues of Drosophila play a crucial
tion of the amnioserosa and yolk sac membrane may role in directing embryonic morphogenesis. Close appo-
fail. Second, that premature amnioserosal apoptosis in sition of the yolk sac membrane and the basal cell mem-
these mutants is a consequence, rather than a cause branes of the amnioserosa is dependent on �PS integrin.
of loss of amnioserosal epithelial integrity. Third, that the This intimate membrane association is required to pro-
amnioserosa may persist in mutants lacking a midgut or mote survival and to prevent anoikis of the amnioserosa.
in those defective for midgut closure. The amnioserosa then directs germ band retraction and

It remains to be determined whether disintegration dorsal closure through physical contacts and/or signal-
and death of the amnioserosa during normal develop- ing. Disintegration and death of the amnioserosa after
ment is caused solely by loss of contact with the yolk closure of the epidermis and midgut correlates with
sac (i.e., is nonautonomously induced) versus whether upregulation of JNK signaling in the amnioserosa, is
signals from cell types other than the yolk—or even an independent of reaper/hid/grim function, and is likely to
amnioserosa-autonomous program—also play a role. represent the first example of developmentally pro-
For example, it is possible that upregulation of JNK grammed anoikis in Drosophila.
signaling in the amnioserosa is independent of loss of
contact with the yolk sac. Analysis of mutants lacking Experimental Procedures
a midgut provide a test of this possibility: if disintegra-

Drosophila Stockstion and death of the amnioserosa occur even when
In this study we used mutants in myospheroid (mys1, Bloomingtonapposition with the yolk sac is maintained, signals from
Drosophila Stock Center), basigin (bsgNP6293, from NP Consortium,other cell types or amnioserosa-autonomous processes
provided by the Drosophila Genetic resource center in Kyoto Insti-

would be implicated. tute of technology; bsgB39.1M2, Bloomington), and twisted gastrulation
The specific role of JNK signaling in amnioserosal (tsg2, Bloomington). Various GFP markers were used to label either

anoikis is difficult to assess because downregulation of the yolk membrane (G289, a PTT line from X. Morin [15]—see
RT-PCR section below), the cell membrane in general (Ubi-DE-cadh-JNK signaling in the amnioserosa and up-regulation of
erin-GFP#5, from H. Oda [14]), or actin-based cellular projectionsJNK signaling in the leading edge of the epidermis
(UAS-actin5C-GFP5.2, from H. Oda [13]). The YET1 vital enhancerare required for dorsal closure [3]. Thus JNK pathway
trap line expresses specifically in the perimeter cells of the amnio-

mutants stall morphogenesis prior to dorsal closure, serosa and was provided by A. Michelson. A GFP-tagged balancer
making it impossible to assess a possible later role. chromosome FM7c, P{GAL4-Kr.C}DC1, P{UAS-GFP.S65T}DC5 (Bloom-
Expression of dominant-negative JNK specifically in the ington) was used to unambiguously identify living mys mutant em-

bryos. For this study we recombined a ftz-GAL4 driver (from J.P.amnioserosa only later in development, when closure is
Vincent) onto a chromosome with UAS-actin5C-GFP5.2 and Ubi-almost complete, will be necessary to rigorously test
DE-cadherin-GFP#5. A w1118 stock was used as a control for quanti-the role of JNK activation in amnioserosal anoikis.
tative dorsal hole experiments, while PTT lines G280 (His-2AV-GFP)All of the data presented above support the hypothe-
and G262 (lamin-GFP) (from X. Morin [15]) were used as controls

sis that phase II amnioserosa-yolk sac membrane asso- for RT-PCR analysis of G289 (see RT-PCR section below). The LP1
ciation is necessary for maintenance of the amniosero- GAL4 driver is specifically expressed in the amnioserosa [34]. Use

of the puc-lacZ enhancer trap A251 to assess JNK signaling in thesal epithelium and, thus, the morphogenetic processes
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amnioserosa has been described previously [3]. The UAS-nuc-lacZ Supplemental Data
Supplemental Movies and Results are available with this article on-transgenic line and Df(3L)H99, a small deficiency that removes the

reaper, hid, and grim cell death genes [28], were obtained from the line at http://www.current-biology.com/cgi/content/full/14/5/372/
DC1/.Bloomington Drosophila Stock Center.
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